Graph Translation
Study of the graph translation using the GraSP Matlab® toolbox available on Github.
Graph Translation example
We show here how the graph translation is constructed and how it compares to two different time shift like operators, namely the generalized translations and the graph shift.
Example graph
We use a graph of \(100\) vertices randomly drawn in a 2D square of size 10x10 using the uniform distribution.
g = grasp_plane_rnd(100);
g.show_graph_options.color_map = flipud(colormap('hot'));
g.show_graph_options.show_colorbar = true;
grasp_show_graph(gca, g, 'show_edges', false, 'show_colorbar', false);
Add edges between vertices at distance less than \(3\). Weight the edges by a Gaussian kernel \(a_{ij}=exp(-\frac{d(i,j)^2}{2\sigma^2})\) with \(\sigma^2=1/1.5\). Note that grasp_adjacency_thresh thresholds the weights on the edges, and not the distances.
g.A = grasp_adjacency_gaussian(g, 1/1.5);
g.A = grasp_adjacency_thresh(g, exp(-3 * 3 ^ 2));
g.A_layout = 0;
grasp_show_graph(gca, g, 'show_edges', true, 'show_colorbar', false);
Create the Fourier transform.
g = grasp_eigendecomposition(g);
Create the translation operators.
[~, TG] = grasp_translation(g);
T1 = grasp_generalized_translation(g, 1);
GS = g.A;
Example graph signal: delta
Translate a delta signal to study the impulse response.
d10 = grasp_delta(g, 10);
grasp_show_graph(gca, g, 'node_values', abs(d10), 'value_scale', [0 2]);
title('|\delta_{10}|');
grasp_show_graph(gca, g, 'node_values', abs(TG * d10), 'value_scale', [0 1]);
title('|T_g \delta_{10}|');
grasp_show_graph(gca, g, 'node_values', abs(T1 * d10), 'value_scale', [0 max(abs(T1 * d10))], 'highlight_nodes', 1);
title('|T_1 \delta_{10}|');
grasp_show_graph(gca, g, 'node_values', abs(GS * d10), 'value_scale', [0 1]);
title('|A \delta_{10}|');
Iterate the graph translation and the graph shift. We observe the saturation of the color scale for the graph shift due to the non-isometry of this operator.
kmax = 100;
translated_gt(100, kmax + 1) = 0;
translated_gs(100, kmax + 1) = 0;
for k = 0:kmax
translated_gt(:, k + 1) = TG ^ k * d10;
translated_gs(:, k + 1) = GS ^ k * d10;
end
mod_options = struct('value_scale', [0 1]);
titles_mod = arrayfun(@(k) ['$|T_g^{' int2str(k) '} d_{10}|$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/tg_d10_mod_anim.gif', g, abs(translated_gt), titles_mod, 24, mod_options);
ang_options = struct('value_scale', [-pi pi], 'color_map', 'hsv');
titles_ang = arrayfun(@(k) ['$\angle(T_g^{' int2str(k) '} d_{10})$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/tg_d10_ang_anim.gif', g, angle(translated_gt), titles_ang, 24, ang_options);
gs_options = struct('value_scale', [0 1]);
titles_gs = arrayfun(@(k) ['$|A^{' int2str(k) '} d_{10}|$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/gs_d10_anim.gif', g, abs(translated_gs), titles_gs, 24, gs_options);
Normalized output for the graph shift
for k = 0:kmax
translated_gs(:, k + 1) = translated_gs(:, k + 1) / norm(translated_gs(:, k + 1));
end
titles_gs = arrayfun(@(k) ['$|A^{' int2str(k) '} d_{10}| / ||A^{' int2str(k) '} d_{10}||_2$'], 0:kmax, 'UniformOutput', false);
cla(gca);
grasp_generate_gif(gcf, 'html/gs_d10_norm_anim.gif', g, abs(translated_gs), titles_gs, 24, gs_options);
Example graph signal: heat kernel
As defined in [Shuman, Ricaud, Vandergheynst 2015], \(X\) is a heat kernel defined as \(\widehat{X}(l)=Cexp(-10\lambda_l)\), with \(\|X\|_2 = 1\).
cla(gca);
X = grasp_heat_kernel(g, 10);
X = X / norm(X);
grasp_show_graph(gca, g, 'node_values', abs(X));
title('|X|');
Translate \(X\).
grasp_show_graph(gca, g, 'node_values', abs(TG * X), 'value_scale', [0 max(abs(TG * X))]);
title('|T_g X|');
grasp_show_graph(gca, g, 'node_values', abs(T1 * X), 'value_scale', [0 max(abs(T1 * X))], 'highlight_nodes', 1);
title('|T_1 X|');
grasp_show_graph(gca, g, 'node_values', abs(GS * X), 'value_scale', [0 max(abs(GS * X))]);
title('|A X|');
Iterate the graph translation and the graph shift on the signal \(X\). The output of the graph shift is normalised.
kmax = 100;
translated_gt(100, kmax + 1) = 0;
translated_gs(100, kmax + 1) = 0;
for k = 0:kmax
translated_gt(:, k + 1) = TG ^ k * X;
tmp = GS ^ k * X;
translated_gs(:, k + 1) = tmp / norm(tmp);
end
mod_options = struct('value_scale', [0 max(abs(translated_gt(:)))]);
titles_mod = arrayfun(@(k) ['$|T_g^{' int2str(k) '} X|$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/tg_X_mod_anim.gif', g, abs(translated_gt), titles_mod, 24, mod_options);
ang_options = struct('value_scale', [-pi pi], 'color_map', 'hsv');
titles_ang = arrayfun(@(k) ['$\angle(T_g^{' int2str(k) '} X)$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/tg_X_ang_anim.gif', g, angle(translated_gt), titles_ang, 24, ang_options);
gs_options = struct('value_scale', [0 max(abs(translated_gs(:)))]);
titles_gs = arrayfun(@(k) ['$|A^{' int2str(k) '} X| / ||A^{' int2str(k) '} X||_2$'], 0:kmax, 'UniformOutput', false);
grasp_generate_gif(gcf, 'html/gs_X_norm_anim.gif', g, abs(translated_gs), titles_gs, 24, gs_options);